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A simple method is proposed for distributing charged particles in space so that they 
have a thermal energy spectrum. The ions and electrons are taken in pairs which are 
placed randomly over the mesh but the relative position within each pair is chosen to fit 
the Debye distribution. Hardly any more time is needed to set up the particles properly 
in this way than is needed for purely random positioning. 

1. INTROOUCTI~N 

In the computer simulation of plasmas, the ions and electrons are placed in 
phase space according to some prescription and are allowed to interact through 
the electric field computed from the charge distribution. The development of 
various waves and instabilities can then be studied. The most commonly used 
prescription is to place the particles in completely random positions but this is 
unrealistic, as it leaves too much energy in the longer wavelength modes. Sometimes 
this is avoided by going to the other extreme of positioning on a regular spatial 
lattice [l] or even [2] uniform also in velocity space but then the fluctuations are 
subthermal. This quiet start has the advantage that the behaviour of single modes 
is not obscured by the thermal noise but on the other hand the nonlinear inter- 
action between modes is not represented correctly. 

So far there has been no way of starting off the particles from equilibrium but 
we show here that this can, in fact, be done very easily. The computer experiment 
then accurately simulates a plasma having the corresponding value of ND (the 
number of particles in a Debye sphere). If we are interested in plasmas with a 
larger No than we can afford to use, we can either extrapolate from the results of 
small No experiments or use the quiet start to keep the fluctuations down. The 
choice lies between the known random errors in the one case versus the possibility 
of systematic errors during the drift towards equilibrium in the other. 
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2. RANDOM POSITIONING 

As two-dimensional experiments are of most current interest, we express our 
results in this form. The Fourier transform of the density is 

pr = i qj exp(ik * Xj), 
j=l 

where thej-th particle has charge qj per unit length (&e on a rod of length k) and 
is situated at Xj . The sum is taken over all particles in the experiment and periodic 
boundary conditions are assumed. The density correlation function is 

<pk& = 1 cii2 + 1 C 4j4i expW . (xi - x3! 
j ci i#j 

which, when all particles are put in completely randomly, reduces to rze”/C’. The 
energy spectrum 

then suffers an infrared catastrophe whereas, in thermal equilibrium, it should 
be proportional to (1 + /3X2)-l where X is the Debye length [3]. 

3. THERMAL POSITIONING 

In order to modify (EkEmk), we must alter the binary correlations within the 
plasma. The effect of an ion at r = 0 is described by Poisson’s equation 

w# = 4T (-S(r) + I?- - n+), 

where the charge densities induced by the ion are 

n*(r) = +z exp(?e$/rcY) N =&n F +ze&k-T 

in the conventional approximation. The equation 

where x” = KRJ4nne”, is linear; so the principle of superposition can be applied, 
By solving this equation we find that the net excess charge in the vicinity of the 
ion is -e, that is to say there is in effect one extra electron near it. The correct 
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charge density is achieved if we let there be an actual electron near the ion with 
probability density f(r) given by 

The solution of this equation in two dimensions is 

where K, is a modified Bessel function of the second kind. 
Thus, the recipe we propose is: put the ions in completely random positions 

and to each ion place one electron such that its probability density is f, indepen- 
dently of all other ions and electrons. The particle velocities are selected indepen- 
dently from a Maxwellian distribution in the usual way [4]. This method is sym- 
metrical between ions and electrons and it ignores correlations between like 
particles but compensates for this by doubling the unlike particle correlations. 
The density spectrum now has $2 statistically independent terms each of the form 
2e2P(l - cos k * x); hence 

(pkpek) = g (1 - cos k - x> 

The energy spectrum then has the form appropriate to thermal equilibrium 

gk = +KT 
1 + kSX2 ’ 

Within the Debye sphere surrounding an ion, in any decent plasma, there are 
many charged particles [5]. This number is subject to large statistical fluctuations 
(of the form ND & v’F& but on the average there is half an electron more and 
half an ion less than in a randomly chosen region of the same volume. The likeli- 
hood of being able to detect the difference between this situation and our proposal, 
in which the sphere contains one extra electron, is remote. We have an excess 
density near every particle, but the overlap of spheres of influence means that 
no observable effect is produced. The total number of particles is predetermined; 
so the mean particle density cannot rise simultaneously all over the plasma. Only 
if ND were of the order unity would the unwanted boson-like property show itself. 

This simple recipe is in fact better than some variants which at first sight might 
appear to be improvements upon it. For example, the ions might still be put in 
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randomly but the electrons could be assigned randomly to the ions rather than 
one to each of them. Each electron would then have a chance (in)-’ of being 
near a given ion but there are in electrons altogether. This would still give the 
correct mean negative charge near an ion but some electrons would cluster about 
the same ion and would therefore find themselves positively correlated in position 
The simple method of setting up the particles avoids this. 

4. APPROXIMATION OF THE DEBYE DISTRIBUTION 

The usual way [a] of producing random variables with any desired probability 
distribution f(z) starting with random numbers e having a uniform distribution 
in the range 0 to 1, is to solve 

F(z) = J‘l,r(z~) dz’ = c.$ 

for z. The angular coordinate 19 can be chosen easily but the radial variable 
z = r/x must be obtained from 

z-K,(z) = 5. 

This equation could be solved by Newton’s method but the evaluation of the 
modified Bessel function is a slow process and it is preferable to find an approxi- 
mation z(E) to F-l(E) which inverts this equation directly with sufficient accuracy. 

The probability distribution obtained from the trial function z(t) was matched 
to the desired distributionf(z) by adjusting the parameters in z(5) so as to minim&e 
the goodness of fit parameter x”. The best approximation so far discovered is 

443 = 
1.0721~~ + .6601@ + .0697q3 

1 + .0867q - .I840 In 4 ’ 

where $ = -in [. Here over fifty million pairs of particles would be needed before 
the deviations from the true Debye distribution equalled the purely statistical 
fluctuations. Putting it another way, 99.95 T/, of the electrons are placed within 
0.001 h of their correct position and less than one electron in 101” is to be found 
misplaced by more than 0.01 X. 

5. RESULTS 

The energy spectrum has been computed under conditions similar to those 
used in experiments [6] carried out with the GALAXY code 171. An ensemble of 
38 trials with 16384 particles in each trial gave the mean and standard deviation 
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shown by the vertical lines in Fig. 1. The size of the mesh was 64 x 64 and h was 
4/7~ times the mesh interval 6. The x2 test showed that the values agree (20 % 
significance level) with the desired theoretical curve. This curve allows for the 
distortion caused by nearest-grid-point weighting, typically 5 7: under these 
conditions. The calculated spectrum for k parallel to one of the axes is 

d 
k 

_ +KT 2 sit? ~$k8 sinh 6/X 
k2h8 cash 6/h - cos k8 ’ 

This was derived by first finding the probability that the electron and ion should 
be separated by HZ mesh intervals given that the ion is at x, and then taking the 
average over X. For comparison we show the theoretical curve for purely random 
positioning-here the energy content of the modes keeps on rising as k falls. 

Figure 1 has shown that the plasma is apparently in thermal equilibrium at 
time t = 0 but it could be that this is just a fluke and that the spectrum would 
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RG. 1. Energy spectrum as a function of k. The solid curve is the theoretical spectrum and 
the bars show the measured values with their standard deviations. The broken line is the spectrum 
for purely random positioning. 
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FIG. 2. The dispersal of initially correlated particles. R2 is the mean square displacement as a 
function of time. 

deteriorate as the plasma evolves. This possibility has been investigated using the 
GALAXY code. Initially each particle is correlated with only one other; if the 
spectrum is still alright when these initial correlations have disappeared, then the 
correlations nzust have been shared around among the other $n” pairs of particles. 
Once this has happened, the plasma is indeed very close to being really in equili- 
brium. A useful criterion for assessing the decay of the initial correlations is the 
mean square displacement R2 within the original pairs. This starts off at 4h2 and 
it can be followed until it begins to be limited by the periodic lattice. Figure 2 
shows R2, sampled over 16 pairs, as a function of time with unit of Iength 6 and 
unit thermal velocity. These experiments had 4096 electrons and 4096 positrons 
and X was 2. By about t = 5, R2 has increased so much that the initial pairs of 
particles can be considered to be broken. 
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Figure 3 compares the direction averaged spectra initially (t = 0) and after 
the plasma has evolved (average t = 34). The points represent an ensemble 
average over 5 plasmas with thermal starts having h = 2 and the solid curves give 
theoretical spectra. It is clear that both sets of points are consistent with the 
expected deviations marked on the theoretical h = 2 curve and so we conclude 
that the spectrum maintains itself happily as the plasma evolves. 
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FIG. 3. Initial and final spectra for the thermally started plasma compared with the theoretical 
spectra for X = 1,2 and 4. The horizontal lines denote the theoretical standard deviation. 

6. COMPARISON WITH OTHER METHODS 

The thermally started plasma has been shown to stay in equilibrium but it 
might be that the random or uniform starts relax quickly into thermal equilibrium. 
This is investigated in Fig. 4 where the sum of the energy in the lowest 220 modes 
is plotted for each of the three cases. The energy following the thermal start 
remains steady long after the initial correlations have dispersed. The initially 
random distribution is markedly inferior as it displays large persistent oscillations 
instead of getting much closer to equilibrium. Morse [l] has stated that the uniform 
start evolves into thermal equilibrium in about one plasma period, and, as far 
as C c$~ is concerned, this is true. However, we can apply a more sophisticated 
statistical test because we know from the central limit theorem that & , being 
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the superposition of a very large number of random vectors, has a two-dimensional 
Gaussian distribution in the complex plane. Hence the energy in mode b relative 
to the thermal energy> q = &/$(thermalJ , has an exponential distribution, 

f(7)) = e-v. 

The largest y among the 220 modes under investigation then has as its probability 
distribution 

f(qmax) = 2W - exp[-ym&P exp[-~,,,I. 

The values of ymal following the thermal start were quite consistent with this 
distribution as 71 fell in the range 4.5 to 7.5 times thermal compared with the 
theoretical expectation of 70.4. The largest 7 max observed throughout the 88 time 
steps was 9.85 times thermal, which is reasonable because we deduce fromf(ujxnax) 
that this value will be exceeded in two out of three equilibrium plasmas. The 
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FIG. 4. Total energy in the lowest modes as a function of time for the thermal start (solid 
line) compared with the random start (broken line) and uniform start (dotted line). In equilibrium 
x&k should be 75. 
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uniform start gave most of its qmax in the right range, but qmax shot up to 14.08 
times thermal at t = 10. We state, with a 99.8 % chance of being correct, that this 
proves that the plasma is not in equilibrium, belying the assumption from Fig. 4 
that the uniformly started plasma had reached equilibrium by about t = 2. 
Therefore, such plasmas should be viewed with suspicion-they might not be as 
quiescent as they look. 

7. GENERALIZATION 

Because the mass of the particles does not enter into the equation for the electric 
field, the recipe applies equally well when massive ions are present. An experiment 
with M/m = 2048 confirmed that the spectrum remains thermal when the ions 
are still essentially in their original positions but the electrons have moved away. 
This can be generalised as follows: a subgroup of particles, sensing a thermal field, 
will move so as to maintain this field. Therefore the ions, who see the thermal 
field of the rapidly moving electrons, will on their own time scale move so that 
the field remains thermal. 

We have seen how an equilibrium distribution can be set up; by a generalisation 
of the linear superposition argument we can easily add any desired deviations 
from equilibrium. Suppose for instance that we require a 10 times thermal content 
in mode k. This can be achieved by putting 31# particles in according to the 
charge probability distribution cos k . x, electrons in the negative half cycles and 
ions in the positive, with the remainder of the particles in thermal equilibrium. 

8. CONCLUSION 

The computing time needed to set up the thermal distribution in four-dimensional 
phase space is increased by 45 per cent when the Debye correlations are taken into 
account. This increase, being equivalent to one time step, is negligible compared 
with the duration of the whole experiment. The comparative runs with the 
GALAXY code have shown that the random and uniform starts take much more 
than one time step to reach equilibrium. It is not claimed that our method is a 
complete solution to the problem; it can only reproduce the main features of the 
binary correlations. However, these correlations are the ones commonly used as 
the test for thermal equilibrium and it is well worth including them when it can 
be done so easily by this method. 
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